不确定性原理意味着,粒子在某些方面行为像波样:它们没有确定位置,而是被“抹平”成定几率分布。量子力学理论是基于个全新数学基础之上,不再按照粒子和波动来描述实际世界;而只不过利用这些术语,来描述对世界观测而已。所以,在量子力学中存在着波动和粒子二重性:为某些目将波动想像成为粒子是有助,反之亦然。这导致个很重要后果,人们可以观察到两组波或粒子所谓干涉,也就是束波波峰可以和另束波波谷相重合。这两束波互相抵消,而不是像人们预料那样,迭加在起形成更强波(图4.1)。个熟知光干涉例子是,肥皂泡上经常能看到颜色。这是因为从形成泡沫很薄水膜两边反射回来光互相干涉而引起。白光含有所有不同波长或颜色光波,从水膜边反射回来具有定波长波波峰和从另边反射波谷相重合时,对应于此波长颜色就不在反射光中出现,所以反射光就显得五彩缤纷。
图4.1
由于量子力学引进二重性,粒子也会产生干涉。个著名例子即是所谓双缝实验(图4.2)。个带有两个平行狭缝隔板,在它边放上个特定颜色(即特定波长)光源。大部分光都射在隔板上,但是小部分光通过这两条缝。现在假定将个屏幕放到隔板另边。屏幕上任何点都能接收到两个缝来波。然而,般来说,光从光源通过这两个狭缝传到屏幕上距离是不同。这表明,从狭缝来光到达屏幕之时不再是同位相:有些地方波动互相抵消,其他地方它们互相加强,结果形成有亮暗条纹特征花样。
图4.2
非常令人惊异是,如果将光源换成粒子源,譬如具有定速度(这表明其对应波有同样波长)电子束,人们得到完全同样类型条纹。这显得更为古怪,因为如果只有条裂缝,则得不到任何条纹,只不过是电子通过这屏幕均匀分布。人们因此可能会想到,另开条缝只不过是打到屏幕上每点电子数目增加而已。但是,实际上由于干涉,在某些地方反而减少。如果在个时刻只有个电子被发出通过狭缝,人们会以为,每个电子只穿过其中条缝,这样它行为正如同另个狭缝不存在时样——屏幕会给出个均匀分布。然而,实际上即使电子是个个地发出,条纹仍然出现,所以每个电子必须在同时刻通过两个小缝!
粒子间干涉现象,对于们理解作为化学和生物以及由之构成们和们周围所有东西基本单元原子结构是关键。在本世纪初,人们
请关闭浏览器阅读模式后查看本章节,否则可能部分章节内容会丢失。